

Dy-Mark

Chemwatch: 43-0522 Version No: 6.1.1.1 Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 4

Issue Date: **13/08/2016**Print Date: **02/02/2018**S.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Dy-Mark Touch Up All Colours	
Synonyms	12531002 Classic Cream, 12531003 Surfmist, 12531004 Woodland Grey, 12531005 Manor Red, 12531006 Deep Ocean, 12531007 Cottage Green, 12531010 Pale Eucalypt, 12531012 Paperbark, 12531020 Ironstone, 12531021 Jasper, 12531031 Monument, 12541001 Gull Grey, 12541002 Sandstone Grey, 12541003 Ironsand, 12541004 Flaxpod, 12541005 Ebony, 12541006 Grey Friars, 12541007 Permanent Geen, 12541008 Karaka, 12541009 Titania, 12541010 Lignite, 12541011 New Denim Blue	
Proper shipping name	AEROSOLS	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

Application is by spray atomisation from a hand held aerosol pack Use according to manufacturer's directions.

Details of the supplier of the safety data sheet

Registered company name	Dy-Mark	
Address	89 Formation Street Wacol QLD 4076 Australia	
Telephone	+61 7 3327 3004	
Fax	+61 7 3327 3009	
Website	https://www.dymark.com.au	
Email	info@dymark.com.au	

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	+61 7 3327 3099
Other emergency telephone numbers	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

	Min	Max	
Flammability	4		
Toxicity	1		0 = Minimum
Body Contact	2		1 = Low 2 = Moderate
Reactivity	1		3 = High
Chronic	0		4 = Extreme

Poisons Schedule	Not Applicable	
Classification [1]	Aerosols Category 1, Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 3 (narcotic effects)	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

SIGNAL WORD

DANGER

Issue Date: 13/08/2016 Print Date: 02/02/2018

Hazard statement(s)

H222	Extremely flammable aerosol.	
H319	Causes serious eye irritation.	
H336	May cause drowsiness or dizziness.	
AUH044	Risk of explosion if heated under confinement.	
AUH066	Repeated exposure may cause skin dryness and cracking.	

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.	
P211	Oo not spray on an open flame or other ignition source.	
P251	Pressurized container: Do not pierce or burn, even after use.	
P271	Use only outdoors or in a well-ventilated area.	

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P312	Call a POISON CENTER or doctor/physician if you feel unwell.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	

Precautionary statement(s) Storage

P405	Store locked up.
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
123-86-4	10-30	n-butyl acetate
67-64-1	5-15	acetone
141-78-6	5-15	ethyl acetate
111-76-2	1-10	ethylene glycol monobutyl ether
	balance	Ingredients determined not to be hazardous
115-10-6	30-60	dimethyl ether

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. **Eye Contact** Transport to hospital or doctor without delay. ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Skin Contact ▶ Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvent ▶ Seek medical attention in the event of irritation.

If aerosols, fumes or combustion products are inhaled:

► Remove to fresh air.

Lay patient down. Keep warm and rested.

If aerosols come in contact with the eves:

- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Fig. 11 If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- ► Transport to hospital, or doctor.

Ingestion

Inhalation

Not considered a normal route of entry.

▶ If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Chemwatch: 43-0522 Version No: 6.1.1.1

Page 3 of 12 Dy-Mark Touch Up All Colours

Issue Date: 13/08/2016 Print Date: 02/02/2018

Indication of any immediate medical attention and special treatment needed

Treat symptomatically for simple esters:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema .
- Monitor and treat, where necessary, for shock.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications
- Treat seizures with diazepam.
- ▶ Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.

Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.

Consult a toxicologist as necessary

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

for lower alkyl ethers:

BASIC TREATMENT

Establish a patent airway with suction where necessary.

- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- A low-stimulus environment must be maintained.
- Monitor and treat, where necessary, for shock.
- Anticipate and treat, where necessary, for seizures.

DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

F Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.

- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension without signs of hypovolaemia may require vasopressors.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- ▶ Ethers may produce anion gap acidosis. Hyperventilation and bicarbonate therapy might be indicated.
- ► Haemodialysis might be considered in patients with impaired renal function.
- Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

SMALL FIRE:

Water spray, dry chemical or CO2

LARGE FIRE:

Water spray or fog.

Special hazards arising from the substrate or mixture

Fire Incompatibility

► Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Fire Fighting

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.

Chemwatch: 43-0522 Page 4 of 12 Issue Date: 13/08/2016 Version No: 6.1.1.1 Print Date: 02/02/2018

Dy-Mark Touch Up All Colours

▶ Liquid and vapour are highly flammable. ▶ Severe fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. $\,\blacktriangleright\,$ Severe explosion hazard, in the form of vapour, when exposed to flame or spark. Combustion products include: Fire/Explosion Hazard carbon dioxide (CO2) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. carbon monoxide (CO) HAZCHEM

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

nethous and material for containment and cleaning up		
Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. 	
Major Spills	 DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Clear area of all unprotected personnel and move upwind. Alert Emergency Authority and advise them of the location and nature of hazard. May be violently or explosively reactive. Wear full body clothing with breathing apparatus. Remove leaking cylinders to a safe place if possible. Release pressure under safe, controlled conditions by opening the valve. 	

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling	 DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps.
Other information	 Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can Store in original containers in approved flammable liquid storage area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. No smoking, naked lights, heat or ignition sources. Keep containers securely sealed.

		. 1400	Troop contain no coccinity could.								
Conditions for safe storage, including any incompatibilities											
	Suitable containe	ar I	▶ Aerosol dispenser.▶ Check that containers are clearly labelled.								
Stor	age incompatibili	·V	Avoid strong acids, bases. Avoid reaction with oxidising agents								
	^		^	<u> </u>	^						

- Must not be stored together
- May be stored together with specific preventions

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Page 5 of 12

Issue Date: 13/08/2016 Print Date: 02/02/2018 Dy-Mark Touch Up All Colours

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	n-butyl acetate	n-Butyl acetate	713 mg/m3 / 150 ppm	950 mg/m3 / 200 ppm	Not Available	Not Available
Australia Exposure Standards	acetone	Acetone	1185 mg/m3 / 500 ppm	2375 mg/m3 / 1000 ppm	Not Available	Not Available
Australia Exposure Standards	ethyl acetate	Ethyl acetate	720 mg/m3 / 200 ppm	1440 mg/m3 / 400 ppm	Not Available	Not Available
Australia Exposure Standards	ethylene glycol monobutyl ether	2-Butoxyethanol	96.9 mg/m3 / 20 ppm	242 mg/m3 / 50 ppm	Not Available	Not Available
Australia Exposure Standards	dimethyl ether	Dimethyl ether	760 mg/m3 / 400 ppm	950 mg/m3 / 500 ppm	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
n-butyl acetate	Butyl acetate, n-	Not Available	Not Available	Not Available
acetone	Acetone	Not Available	Not Available	Not Available
ethyl acetate	Ethyl acetate	1,200 ppm	1,700 ppm	10000 ppm
ethylene glycol monobutyl ether	Butoxyethanol, 2-; (Glycol ether EB)	60 ppm	120 ppm	700 ppm
dimethyl ether	Methyl ether; (Dimethyl ether)	3,000 ppm	3800 ppm	7200 ppm

Ingredient	Original IDLH	Revised IDLH
n-butyl acetate	1,700 [LEL] ppm	Not Available
acetone	2,500 [LEL] ppm	Not Available
ethyl acetate	2,000 [LEL] ppm	Not Available
ethylene glycol monobutyl ether	700 ppm	Not Available
dimethyl ether	Not Available	Not Available

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment.

Personal protection

Eye and face protection

- Safety glasses with side shields.
- Chemical goggles
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task.
- ▶ Close fitting gas tight goggles

DO NOT wear contact lenses

► Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available.

Skin protection

See Hand protection below

- Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials.
- No special equipment needed when handling small quantities.

OTHERWISE: Hands/feet protection

For esters:

- For potentially moderate exposures:
- Wear general protective gloves, eg. light weight rubber gloves.
- For potentially heavy exposures:
- ▶ Wear chemical protective gloves, eg. PVC. and safety footwear.

Body protection

No special equipment needed when handling small quantities. OTHERWISE:

- Overalls
- Skin cleansing cream.

See Other protection below

- Other protection Eyewash unit.
 - The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton.
 - Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost.

BRETHERICK: Handbook of Reactive Chemical Hazards.

Thermal hazards

Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the $\ computer$ generated selection:

Dy-Mark Touch Up All Colours

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Version No: 6.1.1.1

Dy-Mark Touch Up All Colours

Issue Date: 13/08/2016 Print Date: 02/02/2018

Material	СРІ
##ethyl	acetate
BUTYL	С
BUTYL/NEOPRENE	С
CPE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE	С
PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
TEFLON	С
VITON/BUTYL	С
VITON/CHLOROBUTYL	С
VITON/NEOPRENE	С
##dimethyl	ether
##ethylene glycol monobutyl	ether

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AX-AUS	-	AX-PAPR-AUS / Class 1
up to 50 x ES	-	AX-AUS / Class 1	-
up to 100 x ES	-	AX-2	AX-PAPR-2 ^

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Supplied as an aerosol pack. Contents under PRESSURE. Contains highly flammable ether propellant. Coloured viscous flammable liquid with a solvent odour; not miscible with water. Note: Colours are matched to Colourbond colours.				
Physical state	Liquid	Relative density (Water = 1)	0.93		
Odour	Not Available	Partition coefficient n-octanol / water	Not Available		
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available		
pH (as supplied)	Not Available	Decomposition temperature	Not Available		
Melting point / freezing point (°C)	45-96	Viscosity (cSt)	Not Available		
Initial boiling point and boiling range (°C)	56-157	Molecular weight (g/mol)	Not Applicable		
Flash point (°C)	-41 (propellant)	Taste	Not Available		
Evaporation rate	Not Available	Explosive properties	Not Available		
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available		
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available		
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available		
Vapour pressure (kPa)	Not Available	Gas group	Not Available		
Solubility in water (g/L)	Immiscible	pH as a solution (1%)	Not Available		
Vapour density (Air = 1)	>1	VOC g/L	474.5		

SECTION 10 STABILITY AND REACTIVITY

Reactivity See section 7

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Page **7** of **12** Issue Date: 13/08/2016 Version No: 6.1.1.1 Print Date: 02/02/2018 Dy-Mark Touch Up All Colours

Chemical stability	 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Exposure to 400ppm ethyl acetate may cause mild eye, nose and throat irritation in an unacclimated persons. However, production workers with regular exposure have better tolerance.

Inhalation of toxic gases may cause:

- ▶ Central Nervous System effects including depression, headache, confusion, dizziness, stupor, coma and seizures:
- respiratory: acute lung swellings, shortness of breath, wheezing, rapid breathing, other symptoms and respiratory arrest;
- gastrointestinal: irritation, ulcers, nausea and vomiting (may be bloody), and abdominal pain.

Inhaled

heart: collapse, irregular heartbeats and cardiac arrest;

Following inhalation, ethers cause lethargy and stupor. Inhaling lower alkyl ethers results in headache, dizziness, weakness, blurred vision, seizures and possible coma

Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

Symptoms of asphyxia (suffocation) may include headache, dizziness, shortness of breath, muscular weakness, drowsiness and ringing in the ears. If the asphyxia is allowed to progress, there may be nausea and vomiting, further physical weakness and unconsciousness and, finally, convulsions, coma and death.

WARNING: Intentional misuse by concentrating/inhaling contents may be lethal.

Inhalational exposure to diethyl ether may cause immediate unconsciousness, inco-ordination, blurring of vision, headache, dizziness and death depending on dose and extent of exposure. It is a weak heart sensitiser in dogs.

Ingestion

Accidental ingestion of the material may be damaging to the health of the individual. Not normally a hazard due to physical form of product.

Considered an unlikely route of entry in commercial/industrial environments

Acute intoxication by ethyl acetate causes impaired co-ordination, exhilaration, slurred speech, nausea, vomiting, and may progress to stupor, coma and death from failure of breathing or blood circulation. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)

Ingestion of alkyl ethers may produce stupor, blurred vision, headache, dizziness and irritation of the nose and throat. Respiratory distress and asphyxia may result.

Skin Contact

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons.

Spray mist may produce discomfort

Alkyl ethers may defat and dehydrate the skin producing dermatoses. Absorption may produce headache, dizziness, and central nervous system depression. Open cuts, abraded or irritated skin should not be exposed to this material

Eye

This material can cause eye irritation and damage in some persons. Not considered to be a risk because of the extreme volatility of the gas. Eye contact with alkyl ethers (vapour or liquid) may produce irritation, redness and tears.

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

There is some evidence from animal testing that exposure to this material may result in toxic effects to the unborn baby. Based on experience with similar materials, there is a possibility that exposure to the material may reduce fertility in humans at levels which do not cause

Chronic

Main route of exposure to the gas in the workplace is by inhalation.

Chronic exposure to alkyl ethers may result in loss of appetite, excessive thirst, fatigue, and weight loss.

Workers exposed to acetone for long periods showed inflammation of the airways, stomach and small bowel, attacks of giddiness and loss of strength. Exposure to acetone may enhance the liver toxicity of chlorinated solvents.

There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.

Dy-Mark Touch Up All Colours	TOXICITY Not Available	IRRITATION Not Available
	TOXICITY Dermal (rabbit) LD50: 3200 mg/kg ^[2]	IRRITATION Eye (human): 300 mg
n-butyl acetate	Inhalation (rat) LC50: 1.802 mg/l4 h ^[1]	Eye (rabbit): 20 mg (open)-SEVERE
	Oral (rat) LD50: 10768 mg/kg ^[2]	Eye (rabbit): 20 mg/24h - moderate
		Skin (rabbit): 500 mg/24h-moderate

Issue Date: 13/08/2016 Print Date: 02/02/2018

Dy-Mark Touch Up All Colours

	TOWOTY	NITATION				
		e (human): 500 ppm - irritant				
		· , , , , , , , , , , , , , , , , , , ,				
acetone		e (rabbit): 20mg/24hr -moderate				
		e (rabbit): 3.95 mg - SEVERE				
	Skin (rabbit): 500 mg/24hr - mild Skin (rabbit):395mg (open) - mild					
	John	n (rabbit).393mg (open) - mild				
	TOXICITY	RITATION				
ethyl acetate	Inhalation (rat) LC50: 50 mg/l1 h ^[1] Eye	e (human): 400 ppm				
	Oral (rat) LD50: 5620 mg/kg ^[2]					
	TOXICITY	RITATION				
	dermal (rat) LD50: >2000 mg/kg ^[1] Eye	e (rabbit): 100 mg SEVERE				
ethylene glycol monobutyl ether	Inhalation (rat) LC50: 449.48655 mg/l/4H ^[2] Eye	e (rabbit): 100 mg/24h-moderate				
	Oral (rat) LD50: 250 mg/kg ^[2] Skir	n (rabbit): 500 mg, open; mild				
dimethyl ether		RITATION				
	Inhalation (rat) LC50: 309 mg/l/4H ^[2] Not	t Available				
Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Vadata extracted from RTECS - Register of Toxic Effect of chemical Substances	alue obtained from manufacturer's SDS. Unless otherwise specified				
Dy-Mark Touch Up All Colours	For propylene glycol ethers (PGEs): Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPnA) and tripropylene glycol methyl ether (TPM). Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on the reproductive organs, the developing embryo and foetus, blood or thymus gland, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces and alkoxyacetic acid. Animal testing shows that high concentrations (for example, 0.5%) are associated with birth defects but lower exposures have not been shown to cause adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material; the remaining 90% is alpha isomer. Hazard appears low, but emphasizes the need for care in handling this chemical.					
ACETONE	For acetone: The acute toxicity of acetone is low. Acetone is not a skin irritant or sensitizer, but it removes fat from the skin, and it also irritates the eye. Animal testing shows acetone may cause macrocytic anaemia. Studies in humans have shown that exposure to acetone at a level of 2375 mg/cubic metre has not caused neurobehavioural deficits.					
	For ethylene glycol monoalkyl ethers and their acetates (EGMAEs): Typical members of this category are ethylene glycol propylene ether (EGPE), ethylene glycol butyl ether (EGBE) and ethylene glycol hexyl ether (EGHE) and their acetates. EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyzes the conversion of their terminal alcohols to aldehydes (which are transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehydrogenase produces alkoxyacetic acids, which are the predominant urinary metabolites of mono substituted glycol ethers. Acute Toxicity: Oral LD50 values in rats for all category members range from 739 (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with decreasing molecular weight. Animal testing showed that exposure to ethylene glycol monobutyl ether resulted in toxicity to both the mother and the embryo. Reproductive effects were thought to be less than that of other monoalkyl ethers of ethylene glycol. Chronic exposure may cause anaemia, with enlargement and fragility of red blood cells. It is thought that in animals butoxyethanol may cause generalized clotting and bone infarction. For ethylene glycol is quickly and extensively absorbed throughout the gastrointestinal tract. Limited information suggests that it is also absorbed through the airways; absorption through skin is apparently slow. Following absorption, it is distributed throughout the body. In humans, it is initially metabolized by alcohol dehydrogenase to form glycoaldehyde, which is rapidly converted to glycolic acid and glyoxal. NOTE: Changes in kidney, liver, spleen and lungs are observed in animals exposed to high concentrations of this substance by all routes. ** ASCC (NZ)					
ETHYLENE GLYCOL MONOBUTYL ETHER	EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyze transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehyd urinary metabolites of mono substituted glycol ethers. Acute Toxicity: Oral LD50 values in rats for all category members range from 739 decreasing molecular weight. Animal testing showed that exposure to ethylene glycol monobutyl ether resulted in to thought to be less than that of other monoalkyl ethers of ethylene glycol. Chronic exposure may cause anaemia, with enlargement and fragility of red blood or clotting and bone infarction. For ethylene glycol: Ethylene glycol is quickly and extensively absorbed throughout the gastrointestinal taiways; absorption through skin is apparently slow. Following absorption, it is distrit alcohol dehydrogenase to form glycoaldehyde, which is rapidly converted to glycolic	es the conversion of their terminal alcohols to aldehydes (which are throgenase produces alkoxyacetic acids, which are the predominant (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with exicity to both the mother and the embryo. Reproductive effects were ells. It is thought that in animals butoxyethanol may cause generalized tract. Limited information suggests that it is also absorbed through the buted throughout the body. In humans, it is initially metabolized by a caid and glyoxal.				
	EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyze transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehyd urinary metabolites of mono substituted glycol ethers. Acute Toxicity: Oral LD50 values in rats for all category members range from 739 decreasing molecular weight. Animal testing showed that exposure to ethylene glycol monobutyl ether resulted in to thought to be less than that of other monoalkyl ethers of ethylene glycol. Chronic exposure may cause anaemia, with enlargement and fragility of red blood of clotting and bone infarction. For ethylene glycol: Ethylene glycol is quickly and extensively absorbed throughout the gastrointestinal trainways; absorption through skin is apparently slow. Following absorption, it is distritial clohol dehydrogenase to form glycoaldehyde, which is rapidly converted to glycolic NOTE: Changes in kidney, liver, spleen and lungs are observed in animals exposed.	es the conversion of their terminal alcohols to aldehydes (which are throgenase produces alkoxyacetic acids, which are the predominant (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with excitity to both the mother and the embryo. Reproductive effects were cells. It is thought that in animals butoxyethanol may cause generalized tract. Limited information suggests that it is also absorbed through the buted throughout the body. In humans, it is initially metabolized by a acid and glyoxal.				
MONOBUTYL ETHER N-BUTYL ACETATE & ETHYLENE GLYCOL	EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyze transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehyd urinary metabolites of mono substituted glycol ethers. Acute Toxicity: Oral LD50 values in rats for all category members range from 739 decreasing molecular weight. Animal testing showed that exposure to ethylene glycol monobutyl ether resulted in to thought to be less than that of other monoalkyl ethers of ethylene glycol. Chronic exposure may cause anaemia, with enlargement and fragility of red blood or clotting and bone infarction. For ethylene glycol: Ethylene glycol is quickly and extensively absorbed throughout the gastrointestinal tairways; absorption through skin is apparently slow. Following absorption, it is distributed alcohol dehydrogenase to form glycoaldehyde, which is rapidly converted to glycolic NOTE: Changes in kidney, liver, spleen and lungs are observed in animals exposed SDS The material may produce severe irritation to the eye causing pronounced inflammatics.	es the conversion of their terminal alcohols to aldehydes (which are frogenase produces alkoxyacetic acids, which are the predominant (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with excitity to both the mother and the embryo. Reproductive effects were ells. It is thought that in animals butoxyethanol may cause generalized tract. Limited information suggests that it is also absorbed through the buted throughout the body. In humans, it is initially metabolized by a acid and glyoxal. It is not high concentrations of this substance by all routes. ** ASCC (NZ) the concentration of the prolonged exposure to irritants may produce				
N-BUTYL ACETATE & ETHYLENE GLYCOL MONOBUTYL ETHER N-BUTYL ACETATE & ACETONE & ETHYLENE	EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyze transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehyd urinary metabolites of mono substituted glycol ethers. Acute Toxicity: Oral LD50 values in rats for all category members range from 739 decreasing molecular weight. Animal testing showed that exposure to ethylene glycol monobutyl ether resulted in to thought to be less than that of other monoalkyl ethers of ethylene glycol. Chronic exposure may cause anaemia, with enlargement and fragility of red blood colotting and bone infarction. For ethylene glycol: Ethylene glycol is quickly and extensively absorbed throughout the gastrointestinal tairways; absorption through skin is apparently slow. Following absorption, it is distributed alcohol dehydrogenase to form glycoaldehyde, which is rapidly converted to glycolic NOTE: Changes in kidney, liver, spleen and lungs are observed in animals exposed SDS The material may produce severe irritation to the eye causing pronounced inflammat conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may scaling and thickening of the skin.	es the conversion of their terminal alcohols to aldehydes (which are frogenase produces alkoxyacetic acids, which are the predominant (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with excitity to both the mother and the embryo. Reproductive effects were ells. It is thought that in animals butoxyethanol may cause generalized tract. Limited information suggests that it is also absorbed through the buted throughout the body. In humans, it is initially metabolized by a acid and glyoxal. It is not high concentrations of this substance by all routes. ** ASCC (NZ) the concentration of the prolonged exposure to irritants may produce				
N-BUTYL ACETATE & ETHYLENE GLYCOL MONOBUTYL ETHER N-BUTYL ACETATE & ACETONE & ETHYLENE GLYCOL MONOBUTYL ETHER	EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyze transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehyd urinary metabolites of mono substituted glycol ethers. Acute Toxicity: Oral LD50 values in rats for all category members range from 739 decreasing molecular weight. Animal testing showed that exposure to ethylene glycol monobutyl ether resulted in to thought to be less than that of other monoalkyl ethers of ethylene glycol. Chronic exposure may cause anaemia, with enlargement and fragility of red blood or clotting and bone infarction. For ethylene glycol: Ethylene glycol is quickly and extensively absorbed throughout the gastrointestinal trainways; absorption through skin is apparently slow. Following absorption, it is distritial chold dehydrogenase to form glycoaldehyde, which is rapidly converted to glycolic NOTE: Changes in kidney, liver, spleen and lungs are observed in animals exposed SDS The material may produce severe irritation to the eye causing pronounced inflammat conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may scaling and thickening of the skin.	es the conversion of their terminal alcohols to aldehydes (which are throgenase produces alkoxyacetic acids, which are the predominant (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with excitity to both the mother and the embryo. Reproductive effects were ells. It is thought that in animals butoxyethanol may cause generalized tract. Limited information suggests that it is also absorbed through the buted throughout the body. In humans, it is initially metabolized by acid and glyoxal. If to high concentrations of this substance by all routes. ** ASCC (NZ) tion. Repeated or prolonged exposure to irritants may produce				
N-BUTYL ACETATE & ETHYLENE GLYCOL MONOBUTYL ETHER N-BUTYL ACETATE & ACETONE & ETHYLENE GLYCOL MONOBUTYL ETHER Acute Toxicity	EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyze transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehyd urinary metabolites of mono substituted glycol ethers. Acute Toxicity: Oral LD50 values in rats for all category members range from 739 decreasing molecular weight. Animal testing showed that exposure to ethylene glycol monobutyl ether resulted in to thought to be less than that of other monoalkyl ethers of ethylene glycol. Chronic exposure may cause anaemia, with enlargement and fragility of red blood colotting and bone infarction. For ethylene glycol: Ethylene glycol is quickly and extensively absorbed throughout the gastrointestinal tairways; absorption through skin is apparently slow. Following absorption, it is distributed alcohol dehydrogenase to form glycoaldehyde, which is rapidly converted to glycolic NOTE: Changes in kidney, liver, spleen and lungs are observed in animals exposed SDS The material may produce severe irritation to the eye causing pronounced inflammat conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may scaling and thickening of the skin.	es the conversion of their terminal alcohols to aldehydes (which are frogenase produces alkoxyacetic acids, which are the predominant (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with exicity to both the mother and the embryo. Reproductive effects were ells. It is thought that in animals butoxyethanol may cause generalized tract. Limited information suggests that it is also absorbed through the buted throughout the body. In humans, it is initially metabolized by acid and glyoxal. In the foliation of this substance by all routes. ** ASCC (NZ) the foliation. Repeated or prolonged exposure to irritants may produce by produce on contact skin redness, swelling, the production of vesicles, inogenicity				
N-BUTYL ACETATE & ETHYLENE GLYCOL MONOBUTYL ETHER N-BUTYL ACETATE & ACETONE & ETHYLENE GLYCOL MONOBUTYL ETHER Acute Toxicity Skin Irritation/Corrosion	EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyze transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehyd urinary metabolites of mono substituted glycol ethers. Acute Toxicity: Oral LD50 values in rats for all category members range from 739 decreasing molecular weight. Animal testing showed that exposure to ethylene glycol monobutyl ether resulted in to thought to be less than that of other monoalkyl ethers of ethylene glycol. Chronic exposure may cause anaemia, with enlargement and fragility of red blood or clotting and bone infarction. For ethylene glycol: Ethylene glycol is quickly and extensively absorbed throughout the gastrointestinal tainways; absorption through skin is apparently slow. Following absorption, it is distrit alcohol dehydrogenase to form glycoaldehyde, which is rapidly converted to glycolic NOTE: Changes in kidney, liver, spleen and lungs are observed in animals exposed SDS The material may produce severe irritation to the eye causing pronounced inflammat conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may scaling and thickening of the skin.	es the conversion of their terminal alcohols to aldehydes (which are frogenase produces alkoxyacetic acids, which are the predominant (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with excitity to both the mother and the embryo. Reproductive effects were ells. It is thought that in animals butoxyethanol may cause generalized tract. Limited information suggests that it is also absorbed through the buted throughout the body. In humans, it is initially metabolized by acid and glyoxal. If to high concentrations of this substance by all routes. ** ASCC (NZ) tion. Repeated or prolonged exposure to irritants may produce By produce on contact skin redness, swelling, the production of vesicles, Finogenicity PEXPOSURE				

Issue Date: 13/08/2016 Print Date: 02/02/2018

Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
Dy-Mark Touch Up All Colours	Not Available	Not Available	Not Available	Not Available	Not Available
n-butyl acetate	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	18mg/L	4
	EC50	48	Crustacea	=32mg/L	1
	EC50	72	Algae or other aquatic plants	=674.7mg/L	1
	EC0	192	Algae or other aquatic plants	=21mg/L	1
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	>100mg/L	4
acetone	EC50	48	Crustacea	>100mg/L	4
	EC50	96	Algae or other aquatic plants	20.565mg/L	4
	NOEC	96	Algae or other aquatic plants	4.950mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	212.5mg/L	4
	EC50	48	Crustacea	=164mg/L	1
ethyl acetate	EC50	96	Algae or other aquatic plants	2500mg/L	4
	BCF	24	Algae or other aquatic plants	0.05mg/L	4
	NOEC	504	Crustacea	2.4mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
4	LC50	96	Fish	1250mg/L	4
thylene glycol monobutyl ether	EC50	48	Crustacea	>1000mg/L	4
	NOEC	96	Crustacea	1000mg/L	4
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
dimathyd ath an	LC50	96	Fish	>4100.0mg/L	2
dimethyl ether	EC50	48	Crustacea	>4400.0mg/L	2
	NOEC	48	Crustacea	>4000mg/L	1

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Most ethers are very resistant to hydrolysis, and the rate of cleavage of the carbon-oxygen bond by abiotic processes is expected to be insignificant.

Direct photolysis will not be an important removal process since aliphatic ethers do not absorb light at wavelengths >290 nm

For Ketones: Ketones, unless they are alpha, beta-unsaturated ketones, can be considered as narcosis or baseline toxicity compounds.

Aquatic Fate: Hydrolysis of ketones in water is thermodynamically favourable only for low molecular weight ketones. Reactions with water are reversible with no permanent change in the structure of the ketone substrate. Ketones are stable to water under ambient environmental conditions.

For Propylene Glycol Ethers: log Kow's range from 0.309 for TPM to 1.523 for DPnB. Calculated BCFs range from 1.47 for DPnB to 3.16 for DPMA and TPM, indicating low bioaccumulation. Henry's Law Constants are low for all category members, ranging from 5.7×10 -9 atm-m3/mole for TPM to 2.7×10 -9 atm-m3/mole for PnB.

Environmental Fate: Most are liquids at room temperature and all are water-soluble.

DO NOT discharge into sewer or waterways

For n-Butyl Acetate: Koc: ~200; log Kow: 1.78;

Half-life (hr) air: 144;

Half-life (hr) H2O surface water: 178 - 27156; Henry's atm: m3/mol: 3.20E-04

BOD 5 if unstated: 0.15-1.02,7%;

COD: 78%; ThOD: 2.207;

BCF: 4-14.

Environmental Fate: Terrestrial Fate - Butyl acetate is expected to have moderate mobility in soil. Volatilization of n-butyl acetate is expected from moist and dry soil surfaces. n-Butyl acetate may

biodegrade in soil. For Acetone: log Kow : -0.24;

Half-life (hr) air : 312-1896; Half-life (hr) H2O surface water : 20; Henry's atm m3 /mol : 3.67E-05

BOD 5: 0.31-1.76,46-55% COD: 1.12-2.07

ThOD: 2.2BCF: 0.69.

Environmental Fate: The relatively long half-life allows acetone to be transported long distances from its emission source.

Issue Date: 13/08/2016 Print Date: 02/02/2018

Atmospheric Fate: Acetone preferentially locates in the air compartment when released to the environment. In air, acetone is lost by photolysis and reaction with photochemically produced hydroxyl radicals; the estimated half-life of these combined processes is about 22 days.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
n-butyl acetate	LOW	LOW
acetone	LOW (Half-life = 14 days)	MEDIUM (Half-life = 116.25 days)
ethyl acetate	LOW (Half-life = 14 days)	LOW (Half-life = 14.71 days)
ethylene glycol monobutyl ether	LOW (Half-life = 56 days)	LOW (Half-life = 1.37 days)
dimethyl ether	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
n-butyl acetate	LOW (BCF = 14)
acetone	LOW (BCF = 0.69)
ethyl acetate	HIGH (BCF = 3300)
ethylene glycol monobutyl ether	LOW (BCF = 2.51)
dimethyl ether	LOW (LogKOW = 0.1)

Mobility in soil

Ingredient	Mobility
n-butyl acetate	LOW (KOC = 20.86)
acetone	HIGH (KOC = 1.981)
ethyl acetate	LOW (KOC = 6.131)
ethylene glycol monobutyl ether	HIGH (KOC = 1)
dimethyl ether	HIGH (KOC = 1.292)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ► Reuse
- Recycling
- Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- lt may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ► Where in doubt contact the responsible authority.
- Consult State Land Waste Management Authority for disposal.
- Discharge contents of damaged aerosol cans at an approved site.
- ► Allow small quantities to evaporate.
- ► DO NOT incinerate or puncture aerosol cans.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Land transport (ADG)

UN number UN proper shipping name	1950 AEROSOLS
Transport hazard class(es)	Class 2.1 Subrisk Not Applicable
Packing group	Not Applicable
Environmental hazard	Not Applicable

Page 11 of 12

Dy-Mark Touch Up All Colours

Issue Date: **13/08/2016**Print Date: **02/02/2018**

Special provisions 63 190 277 327 344 Special precautions for user Limited quantity 1000ml Air transport (ICAO-IATA / DGR) **UN** number UN proper shipping name Aerosols, flammable; Aerosols, flammable (engine starting fluid) ICAO/IATA Class 2.1 Transport hazard class(es) ICAO / IATA Subrisk Not Applicable ERG Code 10L Packing group Not Applicable **Environmental hazard** Not Applicable A145 A167 A802; A1 A145 A167 A802 Special provisions Cargo Only Packing Instructions 203 150 kg Cargo Only Maximum Qty / Pack Special precautions for user Passenger and Cargo Packing Instructions 203; Forbidden Passenger and Cargo Maximum Qty / Pack 75 kg; Forbidden Passenger and Cargo Limited Quantity Packing Instructions Y203; Forbidden Passenger and Cargo Limited Maximum Qty / Pack 30 kg G; Forbidden Sea transport (IMDG-Code / GGVSee) **UN** number **AEROSOLS** UN proper shipping name IMDG Class 2.1 Transport hazard class(es) IMDG Subrisk Not Applicable Packing group Not Applicable **Environmental hazard** Not Applicable EMS Number F-D, S-U 63 190 277 327 344 381 959 Special precautions for user Special provisions

Transport in bulk according to Annex II of MARPOL and the IBC code

Limited Quantities

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

1000ml

3, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10		
N-BUTYL ACETATE(123-86-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS		
Australia Exposure Standards	Australia Inventory of Chemical Substances (AICS)	
Australia Hazardous Substances Information System - Consolidated Lists		
ACETONE(67-64-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS		
Australia Exposure Standards	Australia Inventory of Chemical Substances (AICS)	
Australia Hazardous Substances Information System - Consolidated Lists		
ETHYL ACETATE(141-78-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS		
Australia Exposure Standards	Australia Inventory of Chemical Substances (AICS)	
Australia Hazardous Substances Information System - Consolidated Lists		
ETHYLENE GLYCOL MONOBUTYL ETHER(111-76-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS		
Australia Exposure Standards	Australia Inventory of Chemical Substances (AICS)	
Australia Hazardous Substances Information System - Consolidated Lists	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC	

DIMETHYL ETHER(115-10-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards Australia Inventory of Chemical Substances (AICS)	Australia Exposure Standards	Australia Inventory of Chemical Substances (AICS)
--	------------------------------	---

Monographs

Australia Hazardous Substances Information System - Consolidated Lists

National Inventory	Status
Australia - AICS	Υ
Canada - DSL	Υ
Canada - NDSL	N (acetone; n-butyl acetate; ethyl acetate; dimethyl ether; ethylene glycol monobutyl ether)
China - IECSC	Y

Chemwatch: 43-0522 Page **12** of **12** Issue Date: 13/08/2016 Version No: 6.1.1.1 Print Date: 02/02/2018

Dy-Mark Touch Up All Colours

Europe - EINEC / ELINCS / NLP	Y
Japan - ENCS	Y
Korea - KECI	Y
New Zealand - NZIoC	Y
Philippines - PICCS	Y
USA - TSCA	Y
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

Name	CAS No
dimethyl ether	115-10-6, 157621-61-9

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit.

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors

BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.