Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

MACRO CRYSTALLINE GRAPHITE (CARBON) - WITHOUT DUST

SYNONYMS

"Natural Graphite GP 80/85"

PRODUCT USE

Material, lubricant, lead.

SUPPLIER

 Company: Hordern & Company Pty Ltd
 Co

 Address:
 Address:

 PO Box 350
 Ar

 Artarmon
 Ur

 NSW, 1570
 Ge

 Australia
 Telephone: +61 2 9417 6968 (8.30am-4.30pm)

 Fax: +61 2 9417 6954
 Fax: +61 2 9417 6954

Company: Pressol Gmbh Address: Am Gansacker 10 c Umkirch, 79224 Germany

Section 2 - HAZARDS IDENTIFICATION

STATEMENT OF HAZARDOUS NATURE HAZARDOUS SUBSTANCE. NON-DANGEROUS GOODS. According to NOHSC Criteria, and ADG Code.

RISK■ May cause fire.

SAFETY

- Avoid contact with skin.
- Avoid contact with eyes.
- Wear suitable gloves.
- Wear eye/face protection.
- In case of contact with eyes, rinse with plenty of water and contact Doctor or Poisons Information Centre.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%	
graphite, natural	7782-42-5	>90	

Section 4 - FIRST AID MEASURES

SWALLOWED

• Immediately give a glass of water.

• First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

EYE

If this product comes in contact with eyes:

• Wash out immediately with water.

• If irritation continues, seek medical attention.

• Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves for fire only.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

FIRE/EXPLOSION HAZARD

- Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited - particles exceeding this limit will generally not form flammable dust clouds.; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL).are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC)
- A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.
- Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection

Version No:2.0

Section 4 - FIRST AID MEASURES

CHEMWATCH 27-9766 Version No:2.0 CD 2011/2 Page 3 of 12 Section 5 - FIRE FIGHTING MEASURES

measures such as explosion venting.

- All movable parts coming in contact with this material should have a speed of less than 1-meter/sec
- A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source
- One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapours).
- Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen fluoride, silicon dioxide (SiO2), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

• Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result.

HAZCHEM

None

Personal Protective Equipment

Gloves, boots (chemical resistant).

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise Emergency Services.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

MACRO CRYSTALLINE GRAPHITE (CARBON) - WITHOUT DUST Chemwatch Independent Material Safety Data Sheet Issue Date: 1-Aug-2011 NA317TCP

- Wet, activated carbon removes oxygen from the air thus producing a severe hazard to workers inside carbon vessels and in enclosed or confined spaces where activated carbons might accumulate.
- Before entry to such areas, sampling and test procedures for low oxygen levels should be undertaken; control conditions should be established to ensure the availability of adequate oxygen supply.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

SUITABLE CONTAINER

- Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

STORAGE INCOMPATIBILITY

- For carbon powders:
- Avoid oxidising agents, reducing agents.
- Reaction with finely divided metals, bromates, chlorates, chloramine monoxide, dichlorine oxide, iodates, metal nitrates, oxygen difluoride, peroxyformic acid, peroxyfuroic acid and trioxygen difluoride may result in an exotherm with ignition or explosion. Less active forms of carbon will ignite or explode on suitably intimate contact with oxygen, oxides, peroxides, oxosalts, halogens, interhalogens and other oxidising species.
- Explosive reaction with ammonium nitrate, ammonium perchlorate, calcium hypochlorite and iodine pentoxide may occur following heating. Carbon may react violently with nitric acid and may be explosively reactive with nitrogen trifluoride at reduced temperatures. In the presence of nitrogen oxide, incandescence and ignition may occur. Finely divided or highly porous forms of carbon, exhibiting a high surface area to mass (up to 2000 m2/g) may function as unusually active fuels possessing both adsorptive and catalytic properties which accelerate the release of energy in the presence of oxidising substances. Dry metal-impregnated charcoal catalysts may generate sufficient static, during handling, to cause ignition.
- Graphite in contact with liquid potassium, rubidium or caesium at 300 deg. C. produces intercalation compounds (C8M) which ignite in air and may react explosively with water. The fusion of powdered diamond and potassium hydroxide may produce explosive decomposition.

STORAGE REQUIREMENTS

■ Carbon and charcoal may be stabilised for storage and transport, without moistening, by treatment with hot air at 50 deg. C.. Use of oxygen-impermeable bags to limit oxygen and moisture uptake has been proposed. Surface contamination with oxygenated volatiles may generate a heat of reaction (spontaneous heating). Should stored product reach 110 deg. C., stacked bags should be pulled apart with each bag separated by an air space to permit cooling away from other combustible materials.

• Store in original containers.

MACRO CRYSTALLINE GRAPHITE (CARBON) - WITHOUT DUST Chemwatch Independent Material Safety Data Sheet Issue Date: 1-Aug-2011 CHE

NA317TCP

CHEMWATCH 27-9766 Version No:2.0 CD 2011/2 Page 5 of 12 Section 7 - HANDLING AND STORAGE

- Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations
- For major quantities:
- Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams).
- Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS Source	Material	TWA mg/m³	Notes
Australia Exposure Standards	graphite, natural (Carbon black)	3	
Australia Exposure Standards	graphite, natural (Silica - Amorphous Fumed silica (respirable dust))	2	(see Chapter 14)
Australia Exposure Standards	graphite, natural (Graphite (all forms except fibres) (respirable dust)(g)(natural & synthetic))	3	(see Chapter 14)

EMERGENCY EXPOSURE I		
Material	Revised	IDLH
graphite, natural 10065- 1	1, 250	
graphite, natural 10065-1	1, 750	

MATERIAL DATA

MACRO CRYSTALLINE GRAPHITE (CARBON) - WITHOUT DUST: Not available

GRAPHITE, NATURAL:

■ For graphite:

Graphite pneumoconiosis resembles coal workers' pneumoconiosis. Data indicate that the higher the crystalline silica content of graphite the more likely the disease will increase in severity. The presence of anthracite coal in the production of some synthetic grades of graphite appears to make arbitrary the use of the term, "synthetic", "artificial" or "natural".

The TLV-TWA for carbon black is recommended to minimise complaints of excessive dirtiness and applies only to commercially produced carbon blacks or to soots derived from combustion sources containing absorbed polycyclic aromatic hydrocarbons (PAHs). When PAHs are present in carbon black (measured as the cyclohexane-extractable fraction) NIOSH has established a REL-TWA of 0.1 mg/m3 and considers the material to be an occupational carcinogen.

The NIOSH REL-TWA was "selected on the basis of professional judgement rather than on data delineating safe from unsafe concentrations of PAHs".

This limit was justified on the basis of feasibility of measurement and not on a demonstration of its safety.

The concentration of dust, for application of respirable dust limits, is to be determined from the fraction that penetrates a separator whose size collection efficiency is described by a cumulative log-normal function with a median aerodynamic diameter of 4.0 μ m (+-) 0.3 μ m and with a geometric standard deviation of 1.5 μ m (+-) 0.1 μ m, i.e..generally less than 5 μ m.

Because the margin of safety of the quartz TLV is not known with certainty and given the associated link between silicosis and lung cancer it is recommended that quartz concentrations be maintained as far below the TLV as prudent practices will allow.

For amorphous crystalline silica (precipitated silicic acid):

MACRO CRYSTALLINE GRAPHITE (CARBON) - WITHOUT DUST

Chemwatch Independent Material Safety Data Sheet Issue Date: 1-Aug-2011 NA317TCP

CHEMWATCH 27-9766 Version No:2.0 CD 2011/2 Page 6 of 12 Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

Amorphous crystalline silica shows little potential for producing adverse effects on the lung and exposure standards should reflect a particulate of low intrinsic toxicity. Mixtures of amorphous silicas/ diatomaceous earth and crystalline silica should be monitored as if they comprise only the crystalline forms.

The dusts from precipitated silica and silica gel produce little adverse effect on pulmonary functions and are not known to produce significant disease or toxic effect.

IARC has classified silica, amorphous as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing.

ES TWA: 3 mg/m3 TLV TWA: 2 mg/m3 OES TWA: 10 mg/m3 total inhalable dust OES TWA: 4 mg/m3 respirable dust IDLH Level: 1250 mg/m3

PERSONAL PROTECTION

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent].

HANDS/FEET

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.

• Eye wash unit.

RESPIRATOR

•Type AX-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

■ If inhalation risk above the TLV exists, wear approved dust respirator.

- Use respirators with protection factors appropriate for the exposure level.
- Up to 5 X TLV, use valveless mask type; up to 10 X TLV, use 1/2 mask dust respirator
- Up to 50 X TLV, use full face dust respirator or demand type C air supplied respirator
- Up to 500 X TLV, use powered air-purifying dust respirator or a Type C pressure demand supplied-air respirator
- Over 500 X TLV wear full-face self-contained breathing apparatus with positive pressure mode or a combination respirator with a Type C positive pressure supplied-air full-face respirator and an auxiliary self-contained breathing apparatus operated in pressure demand or other positive pressure mode.
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. For further information consult site specific CHEMWATCH data (if available), or your Occupational Health and Safety Advisor.

ENGINEERING CONTROLS

■ Exhaust ventilation should be designed to prevent accumulation and recirculation in the workplace and safely remove carbon black from the air.

Note: Wet, activated carbon removes oxygen from the air and thus presents a severe hazard to workers inside carbon vessels and enclosed or confined spaces. Before entering such areas sampling and test procedures for low oxygen levels should be undertaken and control conditions set up to ensure ample oxygen availability.[Linde].

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Welldesigned engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.

Such protection might consist of:

- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks.

MACRO CRYSTALLINE GRAPHITE (CARBON) - WITHOUT DUST

Chemwatch Independent Material Safety Data Sheet Issue Date: 1-Aug-2011 NA317TCP

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE

Light grey odourless solid; insoluble in water.

PHYSICAL PROPERTIES

Does not mix with water. Sinks in water.

State Melting Range (°C) Boiling Range (°C) Flash Point (°C) Decomposition Temp (°C) Autoignition Temp (°C) Upper Explosive Limit (%) Lower Explosive Limit (%)	Divided Solid 3500 Not Applicable Not Applicable Not Available ~600 Not Available Not Available	Molecular Weight Viscosity Solubility in water (g/L) pH (1% solution) pH (as supplied) Vapour Pressure (kPa) Specific Gravity (water=1) Relative Vapour Density	Not Applicable Not Applicable Immiscible Not Applicable Not Applicable Not Appli cable 2.26 Not Applicable
Volatile Component (%vol)	Not Applicable	Evaporation Rate	Not Applicable

Section 10 - STABILITY AND REACTIVITY

CONDITIONS CONTRIBUTING TO INSTABILITY

■ Product is considered stable and hazardous polymerisation will not occur. *For incompatible materials - refer to Section 7 - Handling and Storage.*

Section 11 - TOXICOLOGICAL INFORMATION

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ Ingestion of finely divided carbon may produce gagging and constipation. Aspiration does not appear to be a concern as the material is generally regarded as inert and is often used as a food additive. Ingestion may produce a black stool.

Considered an unlikely route of entry in commercial/industrial environments.

EYE

■ Eyes exposed to carbon particulates may be liable to irritation and burning. These can remain in the eye causing inflammation lasting weeks, and can cause permanent dark dotty discolouration. There is some evidence to suggest that this material can cause eye irritation and damage in some persons.

SKIN

■ There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons.

Open cuts, abraded or irritated skin should not be exposed to this material.

INHALED

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained,

proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result

in excessive exposures.

Impurities found in carbons, including iodine, can be toxic. Carbon dusts in the air may cause irritation of the mucous membranes, eyes and skin. Coughing, irritation of the upper airways and eye burning may occur.

CHRONIC HEALTH EFFECTS

■ Prolonged or repeated inhalation of dust may cause in lung disease. Graphite workers have reported symptoms of headaches, coughing, depression, low appetite, difficult breathing and black sputum. Workers suffering from this have generally worked in the industry for long periods, (10 years or more), although some cases have been reported after as little as four years.

There is insufficient evidence to suggest that exposure to carbon black causes increased susceptibility to cancer or other ill effects. Some lung changes can occur after a prolonged period of exposure as well as increased strain on the right side of the heart.

TOXICITY AND IRRITATION

MACRO CRYSTALLINE GRAPHITE (CARBON) - WITHOUT DUST: Not available. Refer to individual constituents.

GRAPHITE, NATURAL:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY Oral (Rat) LD50: >2000 mg/kg * IRRITATION Skin (rabbit): 4 h non- Irritant * Eye (rabbit): non- Irritant * Skin : Not irritating Eye : Not irritating

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.
* Timcal MSDS

Section 12 - ECOLOGICAL INFORMATION

GRAPHITE, NATURAL:

■ For silica amorphous:

Amorphous silica is chemically and biologically inert. It is not biodegradable. Due to its insolubility in water there is a separation at every filtration and sedimentation process.]

Crystalline and/or amorphous silicas are ubiquitous on the earth in soils and sediments, and in living organisms (e.g. diatoms), but only the dissolved form is bioavailable. On a global scale, the level of manmade synthetic amorphous silicas (SAS) represents up to 2.4% of the dissolved silica naturally present in the aquatic environment. The rate of SAS released into the environment during the product life cycle is negligible in comparison with the natural flux of silica in the environment

Untreated SASs have a relatively low water solubility of 1.91 to 2.51 mmol/l (114 - 151 mg/l) and an extremely low vapour pressure (e.g. < 10–3 Pa at 20°C for Aero sil R972). On the basis of these properties it is expected that SAS released into the environment will be distributed mainly into soil/sediment, slightly into water, and probably not at all into air.

With surface-treated SASs, the addition of organosilicon compounds increases the hydrophobicity. Consequently,

the water solubility is lower than that of untreated silica. The vapour pressure remains extremely low. Due to the presence of organic substances such as surfactants, salts, acids and alkalis in the environment, it is expected that surface-treated silica will be wetted and then adsorbed onto soils or sediments. SAS is regarded as an inert substance and is not expected to undergo any transformation in the atmospheric or terrestrial compartment, apart from dissolution by water.

Biodegradability in sewage treatment plant or in surface water is not applicable to inorganic substances like SAS. Therefore the biodegradation endpoint has limited relevance for SAS. In surface modified SASs, the most common treating agents are organosilicon compounds and these generally represent less than 5% of the material. Biodegradation in sewage treatment plant or in surface water is not expected. Some biodegradation in soil may occur by analogy with the behaviour of linear polydimethylsiloxane in this compartment Ecotoxicity:

Based on available data, SAS is not toxic to environmental organisms (apart from physical desiccation in insects). SAS presents a low risk for adverse effects to the environment.

When hydrophilic SASs (Aerosil 200 and Ultrasil VN3; purity 100% and 98%, respectively), were tested for their acute toxicity to fish and crustaceans, the LC50 and EC50 values were higher than 10,000 mg/l and 1,000 mg/l, respectively.

The zebra fish (Brachydanio rerio) test was performed with SAS in suspension, due to the insolubility of the SAS. No mortality was observed for the fish after 96 hours of exposure at 1,000 mg/l and 10,000 mg/l. The test media remained turbid throughout the test, indicating that the limit of solubility of the product was exceeded.

With the water flea (Daphnia magna), SAS suspensions exceeding the limit of solubility were tested.; some immobilisation was observed. However, no significant immobilisation was observed when a solution filtered through microfibre glass filter was tested. The observed effects were likely caused by physical hampering of the Daphnia due to the presence of undissolved particles.

A surface-treated SAS (Aerosil R974; 99.9% pure) was tested on fish and crustaceans. The LC50 to fish and EC50 to Daphnia were found to be higher than 10,000 mg/l and 1,000 mg/l, respectively

The EC50 to algae was found to be higher than 10,000 mg/l filtered suspension The actual dissolved concentrations were not determined. There was no inhibition of the biomass or of the growth rate with the 10, 000 mg/l filtered suspension.

The antibacterial effect of pressed and unpressed high purity SAS (Aerosil, unspecified) (0.2 g silica + 0.15 ml bacteria strain suspension) kept at 22 C has been investigated (SAS is sometimes pressed to remove air before transportation). The following micro-organisms were studied: Escherichia coli, Proteus sp., Pseudomonas aeruginosa, Aerobacter aerogenes,

Micrococcus pyrogenes aureus, Streptococcus faecalis, Streptococcus pyrogenes humans, Corynebacterium diphtheria, Candida albicans and Bacillus subtilis. The SAS was contaminated either by hand contact, by saliva droplets or by contact with the atmosphere. Rodshaped gram-negative organisms (Escherichia coli, Bacterium proteus, Pseudomonas aeruginosa

and Aerobacter aerogenes) died between 6 hours and 3 days in contact with unpressed SAS. Gram-positive microorganisms were somewhat more resistant. In addition, the tests demonstrated that survival of bacteria was shorter in unpressed than in pressed SAS. For silica:

The literature on the fate of silica in the environment concerns dissolved silica in the aquatic environment, irrespective of its origin (man-made or natural), or structure (crystalline or amorphous). Indeed, once released and dissolved into the environment no distinction can be made between the initial forms of silica. At normal environmental pH, dissolved silica exists exclusively as monosilicic acid [Si(OH)4]. At pH 9.4 the solubility of amorphous silica is about 120 mg SiO2/I. Quartz has a solubility of only 6 mg/l, but its rate of dissolution is so slow at ordinary temperature and pressure that the solubility of amorphous silica represents the upper limit of dissolved silica concentration in natural waters. Moreover, silicic acid is the bioavailable form for aquatic organisms and it plays an important role in the biogeochemical cycle of Si, particularly in the oceans.

In the oceans, the transfer of dissolved silica from the marine hydrosphere to the biosphere initiates the global biological silicon cycle. Marine organisms such as diatoms, silicoflagellates and radiolarians build up their skeletons by taking up silicic acid from seawater. After these organisms die, the biogenic silica accumulated in them partly dissolves. The portion of the biogenic silica that does not dissolve settles and ultimately reaches the sediment. The transformation of opal (amorphous biogenic silica) deposits in sediments through diagenetic processes allows silica to re-enter the geological cycle. Silica is labile between the water and sediment interface.

Ecotoxicity:

Fish LC50 (96 h): Brachydanio rerio >10000 mg/l; zebra fish >10000 mg/l Daphnia magna EC50 (24 h): >1000 mg/l; LC50 924 h): >10000 mg/l.

continued...

Chemwatch Independent Material Safety Data Sheet Issue Date: 1-Aug-2011 NA317TCP

Mobility

Bioaccumulation

DO NOT discharge into sewer or waterways.

Ecotoxicity Ingredient

Macro Crystalline Graphite (Carbon) - Without Dust graphite, natural Persistence: Water/Soil No Data Available No Data Available

Persistence: Air No Data Available No Data Available

Section 13 - DISPOSAL CONSIDERATIONS

■ Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling

• Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. • DO NOT allow wash water from cleaning or process equipment to enter drains.

- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

HAZCHEM:

None (ADG7)

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: ADG7, UN, IATA, IMDG

Section 15 - REGULATORY INFORMATION

POISONS SCHEDULE None

REGULATIONS

Regulations for ingredients

graphite, natural (CAS: 7782-42-5) is found on the following regulatory lists;

"Australia Exposure Standards", "Australia Hazardous Substances", "Australia High Volume Industrial Chemical List (HVICL)", "Australia Inventory of Chemical Substances (AICS)"

No data for Macro Crystalline Graphite (Carbon) - Without Dust (CW: 27-9766)

Section 16 - OTHER INFORMATION

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: 1-Aug-2011 Print Date: 1-Aug-2011

This is the end of the MSDS.